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Abstract The information coupling between chemical bonds in molecular frag-
ments, e.g., distinct parts of a single molecule or reactants in the bimolecular system,
is investigated within the orbital communication theory. The relevant overlap measures
of the joint/conditional “probabilities” of simultaneous two-orbital probability scat-
terings on different sites are established within the standard restricted Hartree-Fock
(SCF LCAO MO) theory and the associated entropy/information descriptors of the
chemical interactions between the bond/reactivity phenomena in such molecular sub-
systems are explored. The relevant four-orbital bond-projections measure the external
dependencies between the associated intra-fragment communications between atomic
orbitals on each fragment, thus effectively accounting for the external communication
couplings between the internal chemical bonds in each subsystem.

Keywords Bond descriptors · Chemical bond theory · Entropy covalency ·
Information ionicity · Information theory · Many-orbital bond projections ·
Molecular information channels · Molecular subsystems · Orbital communications in
molecules

1 Introduction

Use of standard techniques of the information theory (IT) [1–8] gives a valuable
insight into the entropic origins and the IT-covalent (communication-noise) and

Throughout the paper A denotes a scalar quantity, A stands for a row-vector, and A represents a
square/rectangular matrix. The numerical entropies are reported in bits, which correspond to the base 2 in
the logarithmic measure of information.
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IT-ionic (information-flow) components of the chemical bonds in molecular systems,
e.g. [9–19]. The Shannon theory of communication [4–6] has been successfully ap-
plied to probe the bonding patterns in molecules within the communication theory of
the chemical bond (CTCB) [9,19–34]. Its latest realization, called the orbital com-
munication theory (OCT) [10,31–34] has been shown to provide efficient tools for
exploring bonding patterns in molecules and tackling diverse problems in the theory
of molecular electronic structure. The electron localization function (ELF) [35] has
been shown to explore the non-additive part of the Fisher information [1–3] in the
molecular orbital (MO) resolution [9,10,36], while a similar approach in the atomic
orbital (AO) representation generates the so called contra-gradience (CG) descriptors
of chemical bonds, which are related to the AO matrix representation of the electronic
kinetic-energy [10,37–39].

The key concept of OCT is the information system in the basis function resolution,
exploring the associated (condensed) electron probabilities of AO as carriers of infor-
mation in the molecular system under consideration. The adopted basis functions (AO)
of the standard restricted Hartree-Fock (RHF) theory in its analytical SCF LCAO MO
realization then determine the underlying elementary “events” determining the chan-
nel inputs a = {ai } and outputs b = {b j }, and the associated probabilities of finding an
electron on these functions P(a) = {P(ai ) = pi } = p and P(b) = {P(b j ) = q j } = q.
The orbital information networks describing the orbital communications in the mol-
ecule are then determined by the conditional entropies of the channel outputs given
inputs, P(b|a) = {P(b j |ai ) = P( j |i)}. They describe the probability propagation via
the system chemical bonds and are characterized by the standard quantities developed
in IT for real communication devices.

Due to the electron delocalization throughout the network of the occupied MO the
transmission of “signals” about the electronic AO-events becomes randomly disturbed,
thus exhibiting a typical communication “noise”. Indeed, an electron initially attrib-
uted to the given orbital in the channel “input” a can be later found with a non-zero
probability at several AO in the molecular “output” b. This feature of the electron delo-
calization is embodied in the probability spread in each row of P(b|a). In OCT these
conditional probabilities follow from the quantum-mechanical superposition principle
[40] supplemented by the “physical” projection onto the subspace of the system occu-
pied MO, which determine the molecular pattern of chemical bonds [10,32,41]. In
this formulation of CTCB the off-diagonal orbital communications have been shown
to be proportional to the corresponding Wiberg [42] bond-orders or the related qua-
dratic indices of the chemical bond multiplicity [43–52]. The intra-atomic probability
scatterings determines the additive channel, responsible for the atomic valence polari-
zation (promotion) in the molecule, while the inter-atomic communications determine
the non-additive channel generating the external charge-transfer/delocalization phe-
nomena [10,53].

In order to characterize the external couplings between the internal AO-com-
munications located on different molecular sites the four-orbital probabilities are
required [10,41]. It is the main goal of the present work to explore the relevant
inter-subsystems communications reflecting the information coupling between the
intra-fragment channels. The corresponding overlap/projection measures of the con-
ditional “probabilities”, of the AO-communications on one fragment conditional on
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the AO-communications in another fragment, and their associated entropy/information
descriptors will be examined. Although the emphasis will be placed on the method-
ological issues in developing basic elements of the communication theory of such
inter-fragment couplings in the bond system of the molecule, diverse molecular sce-
narios, to which this extension can be applied, will be also commented upon.

2 Orbital information channels

We begin with a short summary of the molecular communication systems in the
AO/basis-function resolution and their covalency (noise) and ionicity (information-
flow) descriptors [9,10]. In the standard RHF description of the molecular electronic
structure the network of chemical bonds between constituent atoms is determined by
the occupied molecular orbitals (MO) in the system ground-state. Assuming, for sim-
plicity, the closed-shell electron configuration of N = 2n electronic system, thus iden-
tifies the n lowest (doubly-occupied, orthonormal) MO,φ = (φ1, φ2, . . . , φn) = {φs},
as the origins of the bond descriptors in the molecular system under consideration, both
global (in the system as a whole) and regional (in molecular fragments). In the familiar
LCAO MO approach they are generated as linear combinations (LC) φ = χC of the
adopted basis functions (AO), χ = (χ1, χ2, . . . , χm) = {χi }, 〈χ |χ〉 = {δi, j } ≡ I,
e.g., Löwdin’s symmetrically orthogonalized orbitals. Here, the rectangular matrix
C = {Ci,s} = 〈χ | φ〉 groups the LCAO MO coefficients, to be determined from the
energy variational approach using the self-consistent field (SCF) procedure.

The key concept of this standard orbital description is the first-order density matrix
γ in the AO representation, also called the charge-and-bond-order (CBO) matrix.
It represents the projection operator onto the subspace of all doubly occupied MO,
P̂φ = |φ〉〈φ| = ∑

s |φs〉〈φs | ≡ ∑
s P̂s ,

γ = 2 〈χ | φ〉 〈φ |χ〉 = 2CC† ≡ 2 〈χ | P̂φ |χ〉
=

{
γi, j = 2 〈χi | P̂φ

∣
∣χ j

〉 ≡ 2 〈i | P̂φ | j〉
}

, (1)

thus satisfying the idempotency relation:

(γ)2 = 4 〈χ | P̂φ |χ〉 〈χ | P̂φ |χ〉 = 4 〈χ | P̂2
φ |χ〉 = 4 〈χ | P̂φ |χ〉 = 2γ. (2)

The CBO matrix reflects the promoted (valence) state of AO in the molecule. Its
diagonal elements reflect the effective electron occupations of the basis functions in
the ground-state, {Ni = γi,i = Npi }, where p = {pi ≡ P(i) = γi,i/N } stand for
the molecularly normalized probabilities of the AO being occupied in the molecule:∑

i pi = 1. This matrix also determines the system electron density

ρ(r) = 2φ(r)φ†(r) = χ(r)[2CC†]χ†(r) ≡ χ(r)γχ†(r) = N p(r), (3)

and hence also the one-electron probability distribution p(r) = ρ(r)/N , the shape
factor of ρ.
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The occupied MO also determine the key modes of the information propagation in
the molecule [30,32]. The molecular information system in the (condensed) orbital
resolution involves the full list of the AO-events χ in its “input” a = {χi } and “output”
b = {χ j }. It represents the effective communication promotion of these basis functions
in the molecule, via the probability/ information scattering described by the conditional
probabilities of the AO-outputs given the AO-inputs, identified by the row (input) and
column (output) indices i and j , respectively. In OCT the entropy/information indices
of the covalent and ionic components of all chemical bonds in the given molecular
system represent the complementary descriptors of the average communication-noise
and information-flow in the molecular information channel [9,31–34,41].

In this orbital description the AO → AO communication network is thus fully
characterized by the conditional probabilities of the output AO-events, given the input
AO-events,

P(b|a) = {
P(χ j |χi ) ≡ P( j |i) = P(i ∧ j)/P(i)

}
,

∑

j

P( j |i) = 1, (4)

where the associated joint probabilities of simultaneously observing two AO in the
system chemical bonds P(a∧b) = {P(i∧ j)} satisfy the following partial and overall
normalization relations:

∑

i

P(i ∧ j) = P( j),
∑

j

P(i ∧ j) = P(i),
∑

i

∑

j

P(i ∧ j) = 1. (5)

The conditional probabilities of Eq. (4) explore the dependencies between AO resulting
from their simultaneous participation in the system occupied MO, i.e., their involve-
ment in the entire network of chemical bonds in a molecule. They define the prob-
ability scattering in the AO-channel of the molecule, in which the “signals” of the
molecular/promolecular electron allocations to basis functions are transmitted be-
tween the AO inputs and outputs. Such information system constitutes the basis
of OCT of the chemical bond. Due to the electron delocalization in the molecule
via the system occupied MO this information network exhibits a communication
“noise” reflecting a degree of indeterminacy in this electron probability propagation
between AO.

This molecular channel can be probed using both the promolecular (p0 = {p0
i })

and molecular (p) input probabilities, in order to extract the IT-multiplicities of the
ionic and covalent bond components, respectively. The atomic promolecule consists
of the “frozen” free-atoms building the molecule brought to their final (molecular)
locations. Their AO probabilities p0 thus reflect the corresponding ground-states of
the system constituent atoms and can be regarded as defining the initial state in the
bond-formation process, in the spirit of the familiar deformation-density diagrams,

�ρ(r) = ρ(r) − ρ0(r) = N
[

p(r) − p0(r)
]
, (6)

where ρ0(r) and p0(r) stand for the promolecular electron density and its shape/prob-
ability factor, respectively.
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As argued elsewhere [31], using the generalized superposition principle of quantum
mechanics [40] allows one to relate these conditional probabilities to the squares of
the corresponding elements of the density matrix:

P(b|a) =
{

P( j |i) = (2γi,i )
−1γi, jγ j,i = (2γi,i )

−1γ 2
i, j

}
. (7)

The off-diagonal conditional probability of j th AO-output given i th AO-input is thus
proportional to the square of the CBO matrix element linking the two AO, γ j,i = γi, j .
Therefore, it is also proportional to the corresponding AO contribution Mi, j = γ 2

i, j
to the Wiberg [42,43] index of the chemical bond-order between two atoms A and B
in the molecule,

M (A,B) =
∑

i∈A

∑

j∈B
Mi, j , (8)

and to related, generalized quadratic descriptors of the molecular bond-multiplicities
[44–52].

It can be readily verified using Eq. (2) that the associated joint-probability matrix,

P(a∧b) =
{

P(i ∧ j) = P (i) P( j |i) = (2N )−1 γi, jγ j,i

= (2N )−1 〈i | P̂φ | j〉 〈 j | P̂φ |i〉 ≡ (2N )−1 〈i | P̂φ P̂j P̂φ |i〉
= (2N )−1 〈 j | P̂φ |i〉 〈i | P̂φ | j〉 ≡ (2N )−1 〈 j | P̂φ P̂i P̂φ | j〉

}
, (9)

indeed satisfies the normalization conditions of Eq. (5), e.g.,

∑

i

P(i ∧ j) = (2N )−1 ∑

i

γ j,iγi, j = (2N )−1 2γ j, j = P ( j) . (10)

These relations also imply that molecular input probabilities p(a) ≡ p generate the
same probabilities in the output of the molecular channel,

pP(b|a) = p, (11)

thus reflecting the stationary character of this distribution.
The molecular channel with p defining its input signal is thus devoid of any refer-

ence (history) of the chemical bond formation and generates the average noise index of
the molecular bond IT-covalency measured by the conditional-entropy of the system
outputs given inputs:

S(b|a) = −
∑

i

∑

j

P(i ∧ j) log[P(i ∧ j)/P(i)]

=
∑

i

P(i)

⎡

⎣−
∑

j

P( j |i)logP( j |i)
⎤

⎦ ≡
∑

i

P(i)Si ≡ S[p|p] ≡ S. (12)
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This average-noise descriptor thus expresses the difference between the Shannon
entropies of the molecular one- and two-orbital probability distributions:

S = H [P(a∧b)] − H [p],
H [p] = −

∑

i

pi log pi ≡ H(a) ≡ H(b),

H [P(a∧b)] = −
∑

i

∑

j

P(i ∧ j) log P(i ∧ j) ≡ H(a∧b). (13)

Hence, for the independent input and output events, when Pind.(a∧b) = {pi p j },
H [Pind.(a∧b)] = 2H [p], and hence Sind. = H [p], the whole input entropy H [p] is
transformed into the communication noise (bond covalency) of the molecular infor-
mation system.

The molecular channel with p0 determining its input “signal” probability refers to
the initial-state in the bond-formation process, described by the atomic promolecule,
a collection of the non-bonded (free atoms) in their respective positions in the mole-
cule. In other words, it corresponds to the ground-state (fractional) occupations of the
AO contributed by the system constituent free atoms, before their mixing into MO.
This input signal gives rise to the average information-flow descriptor of the system
IT bond-ionicity, relative to this reference, as given by the mutual-information in the
channel inputs and outputs:

I
(

a0 : b
)

=
∑

i

∑

j

P(i ∧ j)log
[

P(i ∧ j)/
(

p j p0
i

)]

=
∑

i

pi

⎧
⎨

⎩

∑

j

P( j |i)log
[

P (i | j) /p0
i

]
⎫
⎬

⎭
≡

∑

i

pi Ii

= H(b) + H
(

a0
)

− H(a∧b)

= H
[
p0

]
− S ≡ I

[
p0 : p

]
≡ I. (14)

This amount of information reflects the fraction of the initial (promolecular) informa-
tion content H [p0], which has not been dissipated as noise in the molecular commu-
nication system. In particlular, for the molecular input, when p0 = p,

I (a : b) =
∑

i

∑

j

P(i ∧ j) log
[
P(i ∧ j)/

(
p j pi

)] = H [p] − S ≡ I [p : p]. (15)

Hence, for the independent input and output events I ind.(a : b) = 0.
The sum of these two bond components,

N
(

a0; b
)

= S + I ≡ N
[
p0; p

]
≡ N = H

[
p0

]

=
∑

i

pi (Si + Ii ) ≡
∑

i

piNi , (16)
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where Ni = − log p0
i stands for the self-information in the promolecular AO-event

χi , measures the overall IT bond-multiplicity of all bonds in the molecular system
under consideration. It is seen to be conserved at the promolecular-entropy level,
which marks the initial information content of AO probabilities. Alternatively, for the
molecular input, when p(a) = p, this quantity preserves the Shannon entropy of the
molecular input probabilities:

N (a; b) = S(b|a) + I (a : b) = H(a) = H [p]. (17)

3 Information couplings between probability-propagations in molecular
fragments

It follows from the OCT outline presented in the preceding section that in this com-
munication approach the chemical bonds originate from the probability scattering
between the basis functions. The two-center probability propagations result in the
external bond phenomena, including the charge-transfer (CT) and electron delocal-
ization between bonded atoms, while the one-center communications are responsible
for the internal polarization (P) of atoms-in-molecules (AIM), i.e., their promotion to
an effective valence state in the molecular environment [53]. In this section we aim
at determining the inter-subsystems communications which reflect the information
coupling between the intra-fragment channels, e.g., in the chemically bonded frag-
ments of a molecule or in weakly interacting molecular reactants. Such development
should facilitate an extension of OCT to the bond-coupling phenomena in molecules
and reactive systems.

Clearly, the extraction of such dependencies between AO-communications on dif-
ferent subsystems, which reflect the influence of chemical bonds in one part of the
molecule on those in another fragment, requires the four-orbital probabilities in the
overall bond system [10,41], since it combines the two-orbital events on both sub-
systems. The corresponding joint probabilities of the simultaneous four-orbital events
generate in turn the associated probabilities of the AO-communications in one frag-
ment conditional on the AO-communications in another fragment, which reflect the
information coupling of interest. We shall explore alternative sets of the doubly- and
triply-conditional “probability” measures, which can be derived from the canonical
four-AO projections. The graph representation of these functions of the CBO matrix
elements will be developed and the entropy/information descriptors of such probability
propagations, inter-subsystem induced in the molecular chemical bond system, from
the input-pairs of AO to the output-pairs of basis functions, will also be examined.

3.1 Probabilities

In OCT of the interactions between molecular subsystems one introduces the gen-
eralized “probability” quantities reflecting the products of the AO projections onto
the occupied subspace of MO, which determine the resultant bonding pattern of the
molecule [41]. These bond-conditional (projected) measures of the overlap between
many basis functions can assume negative values, but they exhibit all the symmetry
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properties and sum-rules of the genuine many-AO probabilities. As such they are
expected to generate useful average entropy/information indices, from the standard
communication-noise and information-flow descriptors of the molecular information
channels in orbital resolution, which reflect the bond-coupling in molecular fragments
and between reactants. In what follows these generalized “probabilities”, conditional
on the molecular bond system, will be used to determine the associated AO-conditional
quantities capable of indexing the dependence between communications (conditional
2-AO events) on different molecular sites.

As demonstrated elsewhere, the overlap measures of the bond “probabilities” of
simultaneous four-orbital events, of finding an electron in the system of chemical bonds
of the molecule simultaneously on the basis functions (χi ∈ a)∧(χ j ∈ b)∧(χk ∈
c)∧(χl ∈ d), where (a, b, c, d) = χ , is proportional to the following product of the
four CBO matrix elements:

P(i ∧ j ∧k∧ l) = (8N )−1 γi, jγ j,kγk,lγl,i . (18)

They satisfy the appropriate normalization conditions:

∑

i

∑

j

∑

k

∑

l

P(i ∧ j ∧k ∧ l) =
∑

i

∑

j

∑

k

P(i ∧ j ∧k)

=
∑

i

∑

j

P(i ∧ j)

=
∑

i

P(i) = 1, (19)

where the bond probability of the simultaneous three-orbital event [10,41]:

P(i ∧ j ∧k) = (4N )−1 γi, jγ j,kγk,i . (20)

This formula can be straightforwardly extended to larger numbers of AO determining
the elementary events [41], e.g.,

P(i ∧ j ∧k ∧l∧m) = (16N )−1 γi, jγ j,kγk,lγl,mγm,i . (21)

Thus, the joint probabilities of Eq. (18) are of the fourth-order in terms of the CBO
matrix elements. Should the AO (χi , χ j ) be located in the fragment A of the molecule
and the basis functions (χk, χl) on another fragment B, the product determining the
probability P([i∧ j]∧[k∧l]) coupling A and B is seen to include both the intra-frag-
ment bond-orders, γi, j and γk,l , as well as the inter-fragment CBO matrix elements:
γ j,k and γl,i . For the weakly coupled fragments, e.g., in molecular reactants at large
separations interacting via the van der Waals forces, before they interact chemically,
the system MO strongly resemble those of the separated fragments, so that γ j,k and γl,i

become very small indeed, thus giving rise to practically vanishing inter-subsystem
joint probabilities. The latter are thus expected to assume appreciable magnitudes only
for the strongly (chemically) interacting subsystems.
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The joint “probabilities” of the simultaneous many-orbital events generate in turn
the associated conditional “probabilities” of the electron communications via the
chemical-bond system of the molecule. The usual (single) probability-conditioning
is effected by dividing the joint r -AO probability P(χ1, χ2, . . . , χs, χs+1, . . . , χr ) ≡
P(p1, p2, . . . , ps, v1, v2, . . . , vr−s) by another joint probability of s AO, P(χ1,

χ2, . . . , χs) ≡ P(p1, p2, . . ., ps),

P(v1, v2, . . . , vr−s |p1, p2, . . . , ps)

= P (p1, p2, . . . , ps, v1, v2, . . . , vr−s) /P (p1, p2, . . . , ps) . (22)

Here, the list of AO in the reference, parameter (p) list of s AO, (p1, p2, . . ., ps), in
the ratio denominator, includes only a subset of r orbitals appearing in the numerator,
with the remaining r–s orbitals (v1, v2, . . ., vr−s) then determining the variable (v)
subset of AO. This conditional probability then satisfies the obvious normalization
condition involving summations over AO in the variable-list only:

∑

v1

∑

v2

. . .
∑

vr−s

P(v1, v2, . . . , vr−s |p1, p2, . . . , ps ) = 1. (23)

Alternatively, this conditioning procedure can be viewed as the AO “grouping” scheme,
since it distinguishes the complementary variable and parameter subsets of orbitals:

(p1, p2, . . . , ps, v1, v2, . . . , vr−s) → [
(p1, p2, . . . , ps) , (v1, v2, . . . , vr−s)

]
. (24)

A variety of such singly-conditional quantities can be defined for the alternative vari-
able and parameter subsets of AO, corresponding to both the molecular and fragment
normalizations. For example, the molecular set of probabilities conditioning a single
AO on larger groups (“clusters”) of basis functions read [see also Eqs. (4) and (7)]:

P(i | j ∧k) = P(i ∧ j ∧k)/P( j ∧k) = γi, jγk,i/(2γk, j ),
∑

i

P(i |k∧l) = 1;

P(i | j ∧k∧l) = P(i ∧ j ∧k∧l)/P( j ∧k∧l) = γi, jγl,i/(2γl, j ),
∑

i

P(i | j ∧k∧l) = 1;

P(i | j ∧k∧l∧m) = P(i ∧ j ∧k∧l∧m)/P( j ∧k∧l∧m) = γi, jγm,i/(2γm, j ),
∑

i

P(i | j ∧k∧l∧m) = 1. (25)

One similarly defines the conditional probabilities for the AO-pair in the variable list:

P(i ∧ j |k) = P(i ∧ j ∧k)/P (k) = 1/
4γi, jγ j,kγk,i/γk,k,

∑

i

∑

j

P(i ∧ j |k) = 1;
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P(i ∧ j |k∧l) = P(i ∧ j ∧k∧l)/P(k∧l) = 1/
4γi, jγ j,kγl,i/γl,k,

∑

i

∑

j

P(i ∧ j |k∧l) = 1;

P(i ∧ j |k∧l∧m) = P(i ∧ j ∧k∧l∧m)/P(k∧l∧m) = 1/
4γi, jγ j,kγm,i/γm,k,

∑

i

∑

j

P(i ∧ j |k∧l∧m) = 1. (26)

The second line of the preceding equation conditions one two-orbital event (i ∧ j)
on another two-orbital event (k∧l). Again, in the above scenario of weakly-coupled
subsystems this probability directly connects to the configuration interaction (CI) rep-
resentation of the van der Waals interactions, with both events then corresponding to
the coupled two-orbital events (electron configurations) on the separate subsystems. In
OCT these probabilities determine the molecular communications between the two-
orbital outputs {i ∧ j} and two-orbital inputs {k ∧ l}, with the off-diagonal block of
probability propagations, {i ∧ j} ∈ A and {k∧l} ∈ B, then specifically reflecting the
chemical interactions between the molecular subsystems A and B.

Accordingly for the three- and four-AO variable sets one finds:

P(i ∧ j ∧k|l) = P(i ∧ j ∧k∧l)/P (l) = γi, jγ j,kγk,lγl,i/(8γl,l),
∑

i

∑

j

∑

k

P(i ∧ j ∧k|l) = 1;

P(i ∧ j ∧k|l∧m) = P(i ∧ j ∧k∧l∧m)/P(l∧m) = γi, jγ j,kγk,lγm,i/(8γm,l),
∑

i

∑

j

∑

k

P(i ∧ j ∧k|l∧m) = 1;

P(i ∧ j ∧k∧l|m) = P(i ∧ j ∧k∧l∧m)/P(m) = γi, jγ j,kγk,lγl,mγm,i/(16γm,m),
∑

i

∑

j

∑

k

P(i ∧ j ∧k|l∧m) = 1. (27)

It should be observed, however, that the IT bond descriptors are generated from the
molecular communications between the input and output AO, quantified by the con-
ditional probabilities of Eqs. (4) and (7). Therefore, in order to directly connect to this
information-system description one has to generate the triply-conditional probability

P(l|k‖ j |i) = P(i ∧ j ∧k∧l)/[P (i) P(i ∧ j)P(k)]
≡ P(k∧l‖i ∧ j)/ [P (i) P(k)] =

(
N 2

4

)
γ j,kγk,lγl,i

γi,iγ j,iγk,k
, (28)

and the associated doubly-conditional joint probability

P[( j |i)∧(l|k)] = P(l|k‖ j |i)P(i ∧ j) = P(i ∧ j ∧k∧l)/ [P (i) P(k)]

=
(

N

8

)
γi, jγ j,kγk,lγl,i

γi,iγk,k
, (29)
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which relate the output conditional event (l|k), of the k → l communication, to the
input event ( j |i), of the i → j communication. Again, in the CI description these two
sets of two-orbital events can be thought of as being related to the formal excitations
i → j and k → l in the molecular bond system, with the probability P(l|k‖ j |i) then
reflecting the information coupling, per P( j |i) = 1, between these elementary AO
excitations.

Therefore [see Eq. (29)], the triply-conditional probability is given by the ratio of
joint probability P[( j |i)∧(l|k)] of two conditional (input/output) events, ( j |i) and
(l|k), respectively, and the input-cluster probability P(i ∧ j), which conditions the
variable, output-cluster (k∧l) of AO on the parameter, input-cluster (i ∧ j):

P(l|k‖ j |i) = P[( j |i)∧(l|k)]/P(i ∧ j). (30)

The probability of Eq. (28) distinguishes the input (parameter) 2-AO group (i ∧ j)
from the complementary output (variable) 2-AO event (k∧l), by the inter-group con-
ditioning factor P(i∧ j) in the ratio denominator, giving rise to the singly-conditional
probability P(k∧l‖i ∧ j), denoted by the double vertical line separating the two sub-
sets of AO, and then introduces the extra, intra-group conditioning in both subsets, via
the denominator factors P(i) and P(k), respectively, denoted by single vertical lines.
Therefore, this probability indeed conditions the output (conditional) event (l|k) on
the input (conditional) event ( j |i), with their joint probability given by Eq. (29). The
latter is seen to fulfill the normalization condition involving the summation over the
variable AO of both conditional events:

∑

j

∑

l

P[( j |i)∧(l|k)] = P(i ∧k)/ [P (i) P(k)] ≡ P(i ∧k)/P ind.(i, k). (31)

This ratio thus measures the correlation between the two parameter AO, as reflected
by the ratio of the joint probability of two AO in the molecular bond system to the
reference joint probability of two independent orbitals.

One can also relate the joint 2-AO event to the conditional 2-AO event. Consider
first the conditional-parameter case, of the conditional event {( j |i)}, for which the
relevant doubly-conditional probability reads:

P(k∧l‖ j |i) = P(i ∧ j ∧k∧l)/P(i ∧ j)P(i) = P(k∧l‖i ∧ j)/P(i)

=
(

N 2

4

)
γ j,kγk,lγl,i

γi,iγ j,i
. (32)

Hence, the associated (singly-conditional) joint probability,

P[( j |i)∧(k∧l)] = P(k∧l‖ j |i)P(i ∧ j) = P(i ∧ j ∧k∧l)/P (i)

=
(

N

8

)
γi, jγ j,kγk,lγl,i

γi,i
, (33)
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satisfies the following normalization relation:

∑

j

∑

k

∑

l

P[( j |i)∧(k∧l)] = 1. (34)

Another set of the doubly-conditional molecular probabilities

P(l|k‖i ∧ j) = P(k∧l‖i ∧ j)/P(k) = P(i ∧ j ∧k∧l)/[P(k)P(i ∧ j)]
=

(
N

4

)
γ j,kγk,lγl,i

γ j,iγk,k
(35)

involves the conditional-variable case, with the “output” two-orbital event (l|k), and
defines the associated singly-conditional joint probability

P[(i ∧ j)∧(l|k)] = P(l|k‖i ∧ j)P(i ∧ j) = P(i ∧ j ∧k∧l)/P(k)

=
(

N

8

)
γi, jγ j,kγk,lγl,i

γk,k
,

∑

i

∑

j

∑

l

P[(i ∧ j)∧(l|k)] = 1. (36)

3.2 Diagrammatic representation

In the MO approximation all bond-projected many-orbital “probabilities” can be ex-
pressed in terms of the corresponding CBO matrix elements (see the preceding section)
by using the explicit expressions for the joint probabilities of Eqs. (9, 18, 20) and (21).
As shown in Table 1 these functions can be systematized by using a simple diagram-
matic technique, in which the off-diagonal density-matrix element is represented by
an arrow connecting the two AO labels, solid—when it appears in numerator, and bro-
ken—when the bond-order is a part of the denominator, with the corresponding circles
representing the diagonal elements. In these graphs the numerical factors are disre-
garded. This convention becomes self-explanatory, when one compares the algebraic
expressions and their associated diagrammatic representations shown in the table.

The table also includes other multi-conditional probabilities, reflecting the infor-
mation couplings between the chemical bonds in molecular subsystems, besides those
already discussed in Sect. 3.1. For example, the doubly-conditional case involving
the conditional event ( j |i) in the variable-part and the joint event (k ∧l ∧m) in the
parameter-list exhibits the “probability”

P( j |i‖k∧l∧m) = P(i ∧ j‖k∧l∧m)/P (i) =
(

N

4

)
γi, jγ j,kγm,i

γi,iγm,k
. (37)

The associated probability of the variable-event (i ∧ j ∧k) conditional on the param-
eter-event (l|m) reads:
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Table 1 Graphical representations of selected overlap/projection measures of many-orbital probabilities
expressed in terms of the CBO-matrix elements

Algebraic functions Diagrammatic representation

A. Joint probabilities

P(i ∧ j) = (2N )−1γi, j γ j,i
i                   j  ≡ i              j

P(i ∧ j ∧k) = (4N )−1γi, j γ j,kγk,i

i 

k j

P(i ∧ j ∧k∧l) = (8N )−1γi, j γ j,kγk,lγl,i

i 
l  j

k 

P(i ∧ j ∧k∧l∧m) = (16N )−1γi, j γ j,kγk,lγl,mγm,i

      i 
m        j

l k 

B. Singly-conditional probabilities

B.1. Single AO in parameter-list

P(i | j) = (2γ j, j )
−1γi, j γ j,i i             j 

P(i ∧ j |k) = (4γk,k )−1γi, j γ j,kγk,i

i 

k j

P(i ∧ j ∧k|l) = (8γl,l )
−1γi, j γ j,kγk,lγl,i

 i 
 l  j

k 

P(i ∧ j ∧k∧l|m) = (16γm,m )−1γi, j γ j,kγk,lγl,mγm,i

      i 
m        j

l k 

B.2. Single AO in variable-list

P(i | j ∧k) = (2γk, j )
−1γi, j γk,i

j 

i k

P(i | j ∧k∧l) = (2γl, j )
−1γi, j γl,i

j 

i l

P(i | j ∧k∧l∧m) = (2γm, j )
−1γi, j γm,i

j 

i          m
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Table 1 continued

Algebraic functions Diagrammatic representation

B.3. Many AO in both lists

P(i ∧ j |k∧l) = (4γl,k )−1γi, j γ j,kγl,i

 j
i        k

l

P(i ∧ j |k∧l∧m) = (4γm,k )−1γi, j γ j,kγm,i

j
i k

m

P(i ∧ j ∧k|l∧m) = (8γm,l )
−1γi, j γ j,kγk,lγm,i

l
k m

j i

C. Doubly-conditional probabilities

C.1. Conditional in the parameter-list

P(i‖l|k) = (N/2)γi,lγk,i (γk,kγk,l )
−1

l

i k

P(i ∧ j‖l|k) = (N/4)γi, j γ j,kγl,i (γl,kγk,k )−1

j
i k

l

P(i ∧ j ∧k‖l|m) = (N/8)γi, j γ j,kγk,lγm,i (γm,lγm,m)−1

l
k m

j i
C.2. Conditional in the variable-list

P( j |i‖k) = (N/4)γi, j γ j,kγk,i (γi,i γk,k )−1

i

k j

P( j |i‖k∧l) = (N/4)γi, j γ j,kγl,i (γi,i γl,k )−1
j

i k
l

P( j |i‖k∧l∧m) = (N/4)γi, j γ j,kγm,i (γi,i γm,k )−1

j
i k

m
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Table 1 continued

Algebraic functions Diagrammatic representation

D. Triply-conditional probabilities

P( j |i‖l|k) = (N 2/4)γi, j γ j,kγl,i (γk,kγl,kγi,i )
−1

j
i k

l

P( j |i‖l∧m|k) = (N 2/4)γi, j γ j,kγm,i (γi,i γm,kγk,k )−1

j
i k

m

P(i ∧ j |k‖m|l) = (N 2/8)γi, j γ j,kγk,lγm,i (γk,kγm,lγl,l )
−1

l
k                      m

j i

P( j |i‖m|k∧l) = (N 2/8)γi, j γ j,kγm,i (γi,i γm,kγk,lγl,k )−1

k
j                         l

i m

P(i | j ∧k‖m|l) = (N 2/4)γi, j γk,lγm,i (γk, j γm,lγl,l )
−1

i
m                        j

l           k

P(i ∧ j ∧k‖l|m) = P(i ∧ j ∧k‖l∧m)/P (m) =
(

N

8

)
γi, jγ j,kγk,lγm,i

γm,mγm,l
. (38)

In the final part of the table we have also listed the diagrams for the probability
expressions of the following triply-conditional, 5-AO events:

P( j |i‖l∧m|k) = P(i ∧ j‖k∧l∧m)/ [P(i)P(k)]

=
(

N 2

4

)
γi, jγ j,kγm,i

γi,iγm,kγk,k
, (39)

P(i ∧ j |k‖m| l) = P(i ∧ j ∧k‖l∧m)/ [P(k)P(l)]

=
(

N 2

8

)
γi, jγ j,kγk,lγm,i

γl,lγm,lγk,k
, (40)

P( j |i‖m| k∧l) = P(i ∧ j‖k∧l∧m)/[P (i) P(k∧l)]

=
(

N 2

2

)
γi, jγ j,kγm,i

γi,iγm,kγk,lγl,k
, (41)

P(i | j ∧k‖m|l) = P(i ∧ j ∧k‖l∧m)/[P( j ∧k)P(l)]

=
(

N 2

4

)
γi, jγk,lγm,i

γk, jγm,lγl,l
. (42)

123



J Math Chem (2010) 47:808–832 823

3.3 Entropy/information descriptors

In the qualitative diagram of Scheme 1a we have delineated areas representing various
indices reflecting the entropy/information couplings between four dependent proba-
bility schemes, {X = (x, P(x)} = (A, B, C, D), which combine the relevant sets of
events, {x} = (a, b, c, d), and their probabilities, {P(x)} = [P(a), P(b), P(c), P(d)].
The Shannon entropies of the latter [Eq. (13)], {H(X) = H [P(x)]}, are depicted by
circles. For example, these partial events may refer to finding in the bond system of
the molecule an electron on the basis functions {x = χx} contributed by molecular

b

a

A           B 

C             D 

S(B |A∧C∧D) ≅  S(B|A∧D) ≈ S(B |A)

I(A:B |C∧D) ≅  I(A:B)

I(B:D |A∧C) ≅  I(B:D)

I(A:C | B∧D) ≅  I(A:C)

I(C:D |A∧B) ≅  I(C:D)

S(D |A∧B∧D) ≅  S(D|C∧B) ≈ S(D|C)

S(D|A∧B∧C) 

I(C:D|A∧B) ≅ I(C:D|A) 

I(A:D|B∧C) 

I(A:C:D|B) 

I(A:B:C:D) 

I(A:B:C|D) 

A
B

C

D

Scheme 1 General entropy/information diagrams of four probability schemes (A, B, C, D) corresponding to
the strongly (chemically) interacting AIM/orbitals (Panel a), and to weakly-interacting, internally-bonded

pairs A–B and C–D (Panel b) in the reaction complex

⎡

⎢
⎢
⎣

A—B
| |
| |
C—D

⎤

⎥
⎥
⎦. The “areas” of selected conditional-

entropy (S) and mutual-information (I ) descriptors of the scheme mutual dependencies are also shown in
these diagrams with I (A : B : C : D) ∼= 0 in Panel b. The entropies of the separate probability distributions
are represented by circles, the circle overlap area denotes the relevant mutual-information quantity, while
the circle remainders, after removal of their overlap(s) with other circle(s), signifies the corresponding
conditional-entropy descriptor
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fragments {X}. The particular arrangement of these fragment entropies for the pair
M1- - - -M2 of the weakly-interacting species M1 = A–B and M2 = C–D, e.g., reac-
tants in the bimolecular reactive system, is shown in Scheme 1b. In these diagrams the
overlap areas between circles reflect the average mutual-information quantities, mea-
suring the bond IT-ionicities, while the corresponding circle-remainders represent the
complementary average conditional entropies, measuring the associated IT-covalency
components. It should be emphasized at this point that some of these descriptors may
assume negative values [6].

Consider, e.g., the conditional entropy of D, given A, B, and C,

S(D|A∧B∧C) = S[P(d)|P(a)∧P(b)∧P(c)]
= −

∑

a∈a

∑

b∈b

∑

c∈c

∑

d∈d

P(a∧b∧c∧d) log P(d| a∧b∧c), (43)

which is shown in Scheme 1a. It represents the residual uncertainty in D, when the
events of the three remaining schemes are known to have occurred already. In the
molecular fragment scenario it measures the overall IT-covalency of all bonds in frag-
ment D, due to the basis functions of the remaining subsystems A, B, and C. The
complementary IT-ionicity index reads [6],

I (A∧B∧C:D) = I [P(a)∧P(b)∧P(c) :P(d)] = H(D) − S(D|A∧B∧C)

=
∑

a∈a

∑

b∈b

∑

c∈c

∑

d∈d

P(a∧b∧c∧d) log
P(a∧b∧c∧d)

P(d)P(a∧b∧c)

=
∑

a∈a

∑

b∈b

∑

c∈c

∑

d∈d

P(a∧b∧c∧d) log
P(d|a∧b∧c)

P(d)
, (44)

thus giving rise to the overall (conditional) bond index in D:

N (A∧B∧C; D) = S(D|A∧B∧C) + I (A∧B∧C:D) = H(D). (45)

Using the property of the information additivity [6] one can alternatively express
the amount of information of Eq. (44) in terms of more elementary mutual informa-
tion quantities generating the overlap area between the envelope of three overlapping
circles (A, B, C) and D (see Scheme 1a):

I (A∧B∧C:D) = I (A:D) + I (B:D|A∧C) + I (C:D|A∧B)

= I (A:D|B∧C) + I (B:D|A∧C) + I (C:D|A∧B)

+I (A:C:D|B) + I (A:B:D|C) + I (A:B:C:D). (46)
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In particular, the two-scheme descriptors [see Eqs. (12) and (15)] read:

S(B|A) = −
∑

a∈a

∑

b∈b

P(a∧b) log P(b|a),

I (A:B) =
∑

a∈a

∑

b∈b

P(a∧b) log
P(b| a)

P(b)
= H(B) − S(B|A). (47)

The associated many-scheme quantities can be similarly expressed by the relevant
probabilities [6,41]:

I (A:B:C) = I (A:B) − I (A:B|C)

= H(A) + H(B) + H(C) − H(A∧B) − H(A∧C)

−H(B∧C) + H(A∧B∧C)

=
∑

a∈a

∑

b∈b

∑

c∈c

P(a∧b∧c) log
P(c|a)P(c|b)

P(c)P(c|a∧b)
, (48)

I (A:B|C) = S(A|C) − S(A|B∧C) =
∑

a∈a

∑

b∈b

∑

c∈c

P(a∧b∧c) log
P(a|b∧c)

P(a|c) ,

(49)

I (A : B:C:D) = I (A:B:C) − I (A:B:C|D)

=
∑

a∈a

∑

b∈b

∑

c∈c

∑

d∈d

P(a∧b∧c∧d) log
P(d|a∧b∧c)P(d|a)P(d|b)P(d|c)

P(d)P(d|a∧b)P(d|b∧c)P(d|a∧c)
,

(50)

I (A:B:C|D) = I (A:B|D) − I (A:B|C∧D), (51)

I (A:B|C∧D) = S(A|C∧D) − S(A|B∧C∧D)

=
∑

a∈a

∑

b∈b

∑

c∈c

∑

d∈d

P(a∧b∧c∧d) log
P(a|b∧c∧d)

P(a|c∧d)
. (52)

In a similar manner one characterizes the IT-covalent and IT-ionic couplings
between the orbital information systems of the complementary subsystems in M =
(M1¦M2) (see Scheme 2). Let the schemes A and B denote the AO input and out-
puts in M1 with the remaining schemes C and D having a similar meaning for M2.
The fragment AO events extend over all basis functions contributed by its constituent
atoms. One then defines the following entropy-information descriptors which reflect
the influence of chemical bond(s) in M1, originating from communications A → B, on
bonds in M2, generated by the communications C → D. The intra-fragment commu-
nications are thus characterized by the conditional probabilities P(B|A) = {P(b|a)}
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Scheme 2 Entropy/information
diagrams of the interaction
between communications
A → B and C → D in the
complementary fragments
M1 = A–B and M2 = C–D of
M = (M1¦M2)

H(A∧B)                  I(B|A:D|C)         H(C∧D)

S (B|A⎪⎪D|C)       S(D|C⎪⎪B|A)

and P(D|C) = {P(d|c)}, respectively, defining the associated singly-conditional prob-
ability schemes (B|A) and (D|C).

The mutual couplings of the complementary subsystems in M are described by the
triply-conditional probabilities P(B|A‖D|C) = {P(b|a‖d|c)}. They are measured by
the following average entropy/information descriptors describing the influence of one
intra-fragment communication network on the other:

S(B|A‖D|C) = −
∑

a∈a

∑

b∈b

∑

c∈c

∑

d∈d

P(a∧b∧c∧d) log P(b|a‖d|c)

= −
∑

a∈a

∑

b∈b

∑

c∈c

∑

d∈d

P(a∧b∧c∧d) log
P[(b|a)∧(d|c)]

P(c∧d)
,

S(D|C‖B|A) = −
∑

a∈a

∑

b∈b

∑

c∈c

∑

d∈d

P(a∧b∧c∧d) log P(d|c‖b|a),

= −
∑

a∈a

∑

b∈b

∑

c∈c

∑

d∈d

P(a∧b∧c∧d) log
P[(b|a)∧(d|c)]

P(a∧b)
, (53)

I (B|A:D|C) =
∑

a∈a

∑

b∈b

∑

c∈c

∑

d∈d

P(a∧b∧c∧d) log
P(b|a‖d|c)

P(a∧b)

=
∑

a∈a

∑

b∈b

∑

c∈c

∑

d∈d

P(a∧b∧c∧d) log
P[(b|a)∧(d|c)]
P(a∧b)P(c∧d)

= H(A∧B) − S(B|A‖D|C) = H(C∧D) − S(D|C‖B|A), (54)

thus giving rise to the associated overall indices of this interaction:

N (B|A; D|C) = S(B|A‖D|C) + I (B|A : D|C) = H(A∧B),

N (D|C; B|A) = S(D|C‖B|A) + I (B|A : D|C) = H(C∧D). (55)

These IT covalency and ionicity descriptors of the communication interaction be-
tween the two subsystems thus conserve the internal uncertainties in each molecular
fragment (see Scheme 2), measured by the Shannon entropies in each subsystem, of
the dependent probability schemes of their constituent parts:
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Scheme 3 Entropy/information
diagram for the chemically
interacting subsystems
M1 = A–B and M2 = C–D in
M = (M1¦M2)

A         B 

 C                     D 

S(B|A C∧D)

I(A:B|C∧D)

I(B:D|A∧C)

I(B:C:D |A)

H(A∧B) = H(A) + H(B) − I (A:B) and H(C∧D)=H(C) + H(D) − I (C:D).

(56)

Some of the entropy/information descriptors discussed in this section have direct
implications for the chemical interactions between subsystems in M = (M1¦M2).
As explicitly shown in Scheme 3, the mutual-information I (A:B|C∧D) reflects the
influence of M2 on the IT-ionicity in M1, while the associated conditional-entropy

S(B|A‖C∧D) = S(B|A) − I (B:D|A ∧C) − I (B:C:D|A) (57)

indexes the effect of the presence of M2 on the internal IT-covalency in M1.
Finally, attributing the four schemes A, B, C and D to the corresponding subsystems

in the bimolecular reactive system

M1–M2 =

⎡

⎢
⎢
⎣

A—B
| |
| |
C—D

⎤

⎥
⎥
⎦ (58)

and using the approximate relations of Scheme 1b imply I (A:B|C ∧ D) ∼=
I (A:B), I (B:C:D|A) ∼= 0, and hence S(B|A‖C∧D) ∼= S(B|A) − I (B:D|A∧C) ≈
S(B|A). Therefore, the weak M1- - - -M2 interactions have practically vanishing ef-
fect on the internal ionicities of reactants, with only their internal covalencies being
slightly affected.

It should be emphasized, that the above expressions for the IT descriptors apply
only to the genuine (positive, fractional) many-AO probabilities, when the non-nega-
tive character of the logarithm argument is automatically assured. Since the overlaps
between the bonding projections of AO can exhibit negative values, the modulus of
the logarithm argument involving such projected quantities should be applied. For
the fractional overlaps this prescription gives rise to the positive contributions in the
bonding (enhancing) coupling of the subsystem communications, and the negative
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contributions for the anti-bonding coupling between the internal communications in
each fragment. In the next section we shall briefly illustrate this point in the repre-
sentative application of the present approach to the communication coupling between
the diatomic fragments of the π -electron system in butadiene, and between alternative
parts of the carbon chain in benzene, using the familiar Hückel MO.

4 Illustrative example: communication couplings in the carbon chain
of π -electron systems

For the consecutive numbering of the four 2pπ orbitals contributed by carbon atoms
in the π -electron chain of butadiene, the CBO matrix in the Hückel MO theory reads:

γ =

⎡

⎢
⎢
⎣

1 2/
√

5 0 −1/
√

5
2/

√
5 1 1/

√
5 0

0 1/
√

5 1 2/
√

5
−1/

√
5 0 2/

√
5 1

⎤

⎥
⎥
⎦ , (59)

thus giving rise to the following molecular two-AO probabilities:

P(a∧b) =

⎡

⎢
⎢
⎣

1/8 1/10 0 1/40
1/10 1/8 1/40 0

0 1/40 1/8 1/10
1/40 0 1/10 1/8

⎤

⎥
⎥
⎦ , P(b|a) =

⎡

⎢
⎢
⎣

1/2 2/5 0 1/10
2/5 1/2 1/10 0
0 1/10 1/2 2/5

1/10 0 2/5 1/2

⎤

⎥
⎥
⎦, (60)

with the conditional probability matrix P(b|a) defining the molecular communications
between AO, which reflect the probability scattering (electron delocalization, “noise”)
pattern in the system as a whole. The corresponding predictions for the six AO in the
benzene ring can be summarized as follows:

γi,i = 1, γi,i+1 = 2/3, γi,i+2 = 0, γi,i+3 = −1/3,

P(i ∧i) = 1/12, P[i ∧(i + 1)] = 1/27, P[i ∧(i + 2)] = 0, P[i ∧(i + 3)] = 1/108,

P(i |i) = 1/2, P(i + 1|i) = 2/9, P(i + 2|i) = 0, P(i + 3|i) = 1/18.

(61)

Consider first alternative divisions of the butadiene basis set M = (1, 2, 3, 4) into
the complementary diatomic fragments, M = [M1, M2], e.g., M = [(1, 2), (3, 4)]
or M = [(1, 4), (2, 3)]. For the first partition the input data of Eq. (59) generate the
following non-vanishing coupling overlaps involving pairs of orbitals on different
subsystems,

P(1∧1∧4∧4) = 1/160 (bonding) and

P(1∧2∧3∧4) = −1/200 (anti-bonding) , (62)
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and hence the associated conditional projections:

P(1∧1|4∧4) = 1/20, P(1∧2|3∧4) = −1/20,

P[(1|1)∧(4|4)] = 1/10, P[(1|2)∧(3|4)] = −2/25,

P(1|1‖4|4) = 4/5, P(1|2‖3|4) = −4/5.

(63)

The triply-conditional probabilities of the preceding equation then generate the follow-
ing entropic indices of the mutual communication couplings between carbon atoms
of the two fragments of the π -chain in butadiene:

S (1 |1‖4| 4) = 0.0020, S (1 |2‖3| 4) = −0.0016. (64)

The predicted weak anti-bonding coupling between the internal off-diagonal com-
munications in both subsystems and the bonding coupling between their diagonal
scatterings both indicate that this interaction makes the internal communications in
each fragment more deterministic (ionic) in character, thus giving rise to less electron
delocalization (covalency) in each subsystem. This observation manifests the (sym-
metry-breaking) competition principle in the bonding pattern of the molecule: the
larger the covalent component of the π -bond in one subsystem, the smaller the bond
covalency in its complementary subsystem.

For the M = [(1, 4), (2, 3)] partition one similarly finds a strong anti-bonding cou-
pling entropies between the diagonal communications in peripheral and central atoms,
respectively:

S(1|1‖2|2) = S(4|4‖3|3) = −0.0420. (65)

It indicates that a more ionic character of the chemical bond in one subsystem generates
less ionic bond in the complementary part of the molecule.

Next, let us examine the communication coupling between two diatomic fragments
in benzene: M1 = (i, i + 1) and M2 = (i + 2, i + 3). The non-vanishing coupling
entropies for such subsystems read:

S(i |i + 1‖i + 2|i + 3) = 0.0021, S(i + 1|i + 1‖i + 2|i + 2) = −0.0185.(66)

Therefore, the off-diagonal (delocalization) probability scatterings in both fragments
enhance one another, while the opposite influence is predicted for the diagonal (local-
ization) propagations in each subsystem. In other words, the more localized (stronger)
the π -bond in one diatomic fragment, the stronger the π bonds in the remaining
diatomics-in-the-molecule. This conjecture agrees with the recent thoughts on the
competition between the σ (stronger) and π (weaker) bonds in the benzene ring, with
the former forcing the regular hexagon structure of the benzene ring and the latter
favoring the alternated pattern of the three localized π bonds of the cyclohexatriene
[54,55].
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5 Conclusion

In this work we have extended OCT by establishing the relevant theoretical frame-
work for treating the chemical interactions between molecular subsystems, and in
particular—for describing the influence of interactions between complementary parts
of the molecule on their internal bonding patterns. The bond-conditioned measures of
the four-AO “probabilities” required for determining the relevant entropy/information
descriptors have been introduced and their explicit expressions in terms of elements of
the molecular first-order reduced density matrix of the RHF theory have been given.
The entropic descriptors describing the coupling between internal information chan-
nels of molecular fragments have been identified and their IT-ionic and IT-covalent
components have been established.

Although the present approach uses the “overlaps” (projections) between AO-com-
ponents in the subspace of the occupied MO as “probability” measures, it is expected
to be nonetheless applicable to many classical problems in the theory of the molecu-
lar electronic structure and chemical reactivity. In fact, the generalized “probability”
indices satisfy the symmetry properties of admissible AO-exchanges and they obey
all sum/normalization rules of the genuine probabilities. Therefore, when used in the
standard communication description to determine the average conditional-entropy
(noise, covalency) and mutual-information (information-flow, ionicity) descriptors of
the chemical bonds and their interactions they should provide a valuable IT bond indi-
cators, for diagnosing the mutual influences of one molecular subsystem on another. In
a sense, the generalized, many-AO overlap represents a more richer concept compared
to the probability itself, by being capable of simultaneously describing the probability
accumulation in all bonding interactions between AO, at the same time giving rise to
the probability depletion in all anti-bonding interactions [41].

In chemistry one is often interested in predicting how the chemical bonds (reac-
tivity) in one part of the molecule or super-molecule influence the bonding pat-
terns (reactivity) in another part of the system under consideration. The present
development facilitates future applications of OCT to such classical problems in
the theory of molecular electronic structure and chemical reactivity. They may
refer to the influence of the catalyst on the internal bonds in the chemisorbed spe-
cies [41] or - to the coupling between regional reactivities of chemical species, e.g.,
[56–60].

Another intriguing question in this IT treatment of chemical bonds is the corre-
spondence between the entropy/information descriptors of molecular and subsystem
communication channels and the chemical concepts of the hardness and softness of
the equilibrium, ground-state distribution of electrons [61–66]. The former reflects
the “resistance” to polarization, while the latter, inverse notion indexes the “easiness”
of effecting such a response to an external perturbation. The soft molecules generally
exhibit the delocalized electrons of the constituent AIM, via the chemical bonds ef-
fected by AO in the atomic valence shells, while the hard species are characterized by
valence electrons which are strongly localized on the bonded atoms/ions. In the infor-
mation-channel description the electron delocalization generates a substantial noise
(IT-covalency) in communications between basis function of the molecular quantum-
mechanical calculations, while the localized electron distributions are synonymous

123



J Math Chem (2010) 47:808–832 831

with a substantial information-flow (IT-ionicity) component of the overall IT
bond-order in question.

Therefore, it is natural to associate the conditional-information quantities with the
corresponding measures of the molecular or regional softnesses, and to interpret the
complementary mutual-information descriptors as providing entropic measures of
the associated chemical hardnesses. An attempt to numerically validate this corre-
spondence will be the subject of future quantum-mechanical study. As also indicated
elsewhere [41], the three-orbital effects imply an extra IT-ionic activation of the chem-
isorbed species in catalytic reactions. A more detailed analysis of this prediction will
be also a subject of a separate analysis.
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